Topic details
| Topic | Polyelectrolyte polymer particles for delivery of pro-angiogenic growth factors to support vascularization of polymer scaffolds in bioapplications. |
|---|---|
| Supervisor | Dana Kubies, PhD |
| Consultant | MSc. Ognen Pop-Georgievski, PhD. |
| Department | Chemistry and Physics of Surfaces and Biointerfaces |
| Description | In tissue engineering, vascularization of polymer scaffolds developed for tissue replacement is crucial for their functionality in the recipient body. Direct administration of free pro-angiogenic proteins (e.g., VEGF or FGF-2) often fails to produce effective results. Polymer-based delivery systems, such as nano- and microparticles, enabling controlled and localized release of growth factors, are therefore intensively studied. The PhD project aims to develop polyelectrolyte nano- and microparticles based on charge-shifting poly(dimethylaminoethyl acrylate) (PDMAEA) polycations for the controlled growth factor delivery. The gradual loss of charge on PDMAEA enables controlled particle degradation, sustained release of growth factors, and reduced toxicity, making these systems attractive for biomedical applications. The doctoral research will focus on i) the synthesis of PDMAEA-based block copolymers via RAFT polymerization to tune the particle charge density and corona composition, ii) the preparation of polyelectrolyte particles and characterization of their physicochemical properties (DLS, zeta potential measurements, IR spectroscopy, ITC, TEM), iii) investigation of protein loading and release behavior using ELISA, and iv) the evaluation of particle biocompatibility and protein bioactivity in collaboration with biologists. The interdisciplinary topic focuses on polymer chemistry and biomedical applications and is suitable for graduates of chemical disciplines such as macromolecular chemistry, physical chemistry, biochemistry, etc. |
| Universities |
|