Description |
The increasing production of greenhouse gas carbon dioxide (CO2) by human activities reached in 2021 more than 36 Gt and thus CO2 is generally considered as the biggest waste contributed to climate change. Current research is trying to address this challenge by capturing CO2 and using it as sustainable feedstock for polymer synthesis. The aim of this work is to investigate the possibilities of converting CO2 into polymer materials. The first route will be the CO2-oxirane (epoxy) coupling reaction, which leads to production of various cyclic carbonates, which are monomers for innovative polymer materials, e.g. non-isocyanate polyurethanes (NIPUs) and epoxides. The second approach will be the direct CO2 transformation into polycarbonates (PC). The third way will involve the ring-opening copolymerization of epoxide with CO2 leading to linear carbonate-ether copolymers. All the above-mentioned strategies will preferable utilize bio-based monomers to obtain fully renewable polymer materials. The important part of this PhD topic will be finding a suitable catalytic system for each synthetic path. Our preliminary experiments showed the successful CO2-epoxy cycloaddition in the presence imidazolium and metal-based ionic liquids (ILs). Due to ILs’ countless possible anion/cation combinations and their exceptional set of properties (low vapor pressure, negligible flammability, high thermal and chemical stability), they can seem to be suitable candidates to catalyze the cycloaddition reaction of epoxide and CO2 with tunable selectivity towards linear / cyclic carbonate and ether formation. As part of the doctoral project, a student's several-month internship at foreign collaborating workplace (INSA Lyon, France) is assumed. The candidates should have good communication skills in English (both in speaking and writing), should be able to work both in a team and independently. Active participation on foreign internships, trainings and scientific conferences is expected. |